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Abstract. We prove that any rational map verifies the intermediate entropy

property.

1. Introduction

In 1980 Katok proved an outstanding result for C1`α diffeomorphisms on com-
pact surfaces: any ergodic measure with positive entropy is hyperbolic. In particu-
lar, given a C1`α surface diffeomorphism f : S Ñ S, for any h P r0, htoppfqq there
exists an ergodic f -invariant probability measure µ such that hµpfq “ h. This
last property is called the intermediate entropy property. Katok conjectured that
the intermediate entropy property holds for any smooth system. Since then, many
partial results have appeared in the literature (see for instance [QS], [Su1], [GSW]
and [Su2]).

In this note1 we will work in other direction. Since for the best of our knowledge
there is no known result for smooth endomorphisms, we address this question. More
specifically, we will consider rational endomorphism of the Riemann sphere.

Theorem 1.1. Any rational map of the Riemann sphere verifies the intermediate
entropy property.

Acknowledgements. I would like to thank to Juan Rivera-Letelier for sharing the
precise ingredient leading to the proof of the main theorem.

2. preliminaries

Let f : ĈÑ Ĉ be a rational map of degree d ě 2 and let Mf be the convex space

of f -invariant probability measures on Ĉ. Recall that this set is compact when
it is provided with the weak˚ topology. In particular, for a continuous function
ϕ : ĈÑ R, mostly called potential in this work, the map

µ ÞÑ

ż

ϕdµ

is continuous.
The topological entropy of f is, roughly speaking, the uniform exponential

growth rate of the topological complexity given by the iteration of f . It also coin-
cides -via the variational principle- with the supremum of all the measure-theoretic
entropies with respect to measures in Mf . Combining inequalities obtained by
Gromov [G], Misiurewicz and Przytycki [MP], the topological entropy was proved
to be equal to logpdq. Later, from the ergodic point of view, Ljubich [L] proved the
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existence and uniqueness of a measure maximizing the entropy (see also [FLM])
together with some relevant ergodic properties of that measure.

A generalization of the topological entropy is the topological pressure. It consists
in associating a weight to each point of Ĉ in order to measure the complexity of the
system in a non-uniformly way. The weight of a point z P Ĉ is given by the value
ϕpzq, where ϕ : ĈÑ R is a potential. This rough idea of weighted entropy can be
defined through the variational principle.

Definition 2.1 (Variational Principle). Let ϕ : Ĉ Ñ R be a continuous potential.
The topological pressure P pϕq of ϕ is defined as

P pϕq “ sup
νPMf

"

hνpfq `

ż

ϕdν

*

,

where hνpfq denotes the measure-theoretic entropy of f . If m PMf maximizes the
supremum, we will call it equilibrium measure for ϕ.

Depending on the dynamical system, and certainly on the regularity of the poten-
tial, many answers can be found around the existence and uniqueness of equilibrium
measures. In our setting it is well known that any continuous potential admits an
equilibrium measure. In fact, this directly follows from the upper-semicontinuity
regularity of the entropy map µÑ hµpfq and the variational principle (see [L]). In
terms of the uniqueness of such a measure, additional assumptions are needed in
general. The easier case occurs when the potential is ϕ ” 0. In this case there is a
unique equilibrium measure associated to it: the measure of maximal entropy.

In order to ensure the uniqueness of an equilibrium measure for an arbitrary
potential, we will use the following fundamental result due to Denker and Urbański
[DU].

Theorem 2.2. Let f : ĈÑ Ĉ be a rational map of degree d ě 2 and ϕ : ĈÑ R a
Hölder-continuous potential verifying

(1) sup
zPĈ

ϕpzq ă P pϕq.

Then ϕ admits a unique equilibrium measure mϕ.

Remark 2.3. By convexity of the map

µ ÞÑ hµpfq `

ż

ϕdµ,

if an equilibrium measure is unique, then it is necessarily ergodic.

The strategy of the proof of Theorem 1.1 is to get the desired ergodic measure as
an equilibrium measure. Hence, to establish whether or not (1) is satisfied will be
crucial. With this goal in mind, the proposition below is outstanding. It roughly
speaking states that repelling periodic orbits do not capture the weighted chaos of
the system (see Proposition 4.1 in [IRRL]). A remarkable aspect of this result is
that this property holds despite the fact that repelling periodic points are dense in
the Julia set (see [J] and [F]), whereas at the same time, the Julia set concentrates
the topological chaos of the dynamical system.

Before giving the proper statement of the proposition, we recall that a periodic
point z0 P Ĉ with period n ě 1 is repelling if |pfnq1pz0q| ą 1.
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Proposition 2.4. Let f : ĈÑ Ĉ be a rational map of degree d ě 2 and ϕ : ĈÑ R
a Hölder-continuous potential. Then, for each integer n ě 1 and each repelling
periodic point z0 of f with period n, we have

1

n

n´1
ÿ

k“0

ϕpfkz0q ă P pϕq.

3. Proof of the main theorem

Let O be any repelling periodic orbit of f with period n. We define ϕ : Ĉ Ñ R
as

ϕpzq “
1

1` dpz,Oq
,

where d is any distance inducing the standard topology of Ĉ. Observe that ϕ is a
Hölder-continuous potential and it attains its maximum exactly on O. In particular,
any measure maximizing the map µ ÞÑ

ş

ϕdµ coincides with the measure ν P Mf

supported on the periodic orbit O.
Let z0 P O. Then, by Proposition 2.4, for every t ą 0, we have

sup
zPĈ
ptϕqpzq “ t “

1

n

n´1
ÿ

k“0

ptϕqpfkz0q ă P ptϕq.

We can then apply Theorem 2.2 to ensure that the potential tϕ admits a unique
equilibrium measure mtϕ for every t ą 0, which is ergodic by Remark 2.3.

Before continuing the proof of the theorem, let us recall a final and standard
property of the pressure map (see Chapter 4 in [Ke] for details).

Theorem 3.1. Let ϕ : Ĉ Ñ R be as before. Then, the map t ÞÑ P ptϕq is convex
and strictly increasing on p0,8q. Moreover, it is differentiable with derivative

d

dt
P ptϕq “

ż

ϕdmtϕ.

From the upper-semicontinuity property of the entropy map and the continuity
of the map µ ÞÑ

ş

ϕdµ it is not hard to prove the following.

Corollary 3.2. Let ϕ : Ĉ Ñ R be as before. Then, the map t ÞÑ
ş

ϕdmtϕ is
continuous on p0,8q. In particular, the pressure map t ÞÑ P ptϕq is C1.

Many conclusions follow after the theorem and corollary above. We leave the
details to the reader.

Fact 1. Any weak˚ limit ν1 of pmtϕqt as tÑ8 verifies

lim
tÑ8

ż

ϕdmtϕ “

ż

ϕdν1.

Fact 2. Any weak˚ limit ν1 of pmtϕqt as tÑ8 must be a maximizing measure for
ϕ, so the sequence pmtϕqt converge to ν.

Fact 3. By continuity of the maps t ÞÑ P ptϕq and t ÞÑ
ş

ϕdmtϕ, we conclude that
the map t ÞÑ hmtϕpfq is continuous on p0,8q.
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Finally, again by the upper-semicontinuity property of the entropy map, we know
that

lim sup
tÑ8

hmtϕpfq ď hνpfq “ 0,

so the map t Ñ hmtϕ
pfq ranges continuously from logpdq at t “ 0, to 0 at t “ 8.

Therefore, for every h P p0, logpdqq there exists th P p0,8q such that hmthϕpfq “ h.
Since mthϕ is ergodic, this concludes the proof of the theorem.

References
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